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FOREWORD

The work described in this report was conducted by Northrop Services,
Inc., Huntsville, Alabama, for the National Aeronautics and Space Administra-
tion, George C. Marshall Space Flight Center, Space Sciences Laboratory,
under contract no. NAS8-21810, Appendix A schedule order number 13. Dr. George
H. Fichtl was the Technical Coordinator for this task.
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INTRODUCTION

In launching the Space Shuttle, it is expected that two recoverable Solid
Rocket Boosters (SRB) will be used. These boosters will detach from the main
vehicle and drop to the ocean, from which they are to be recovered. In some

cases, a component, or possibly a whole booster, will not be recoverable and

will have to be replaced.

It is important to know the probable number of booster components needed
to successfully accomplish the Space Shuttle M!ssion of 440 flights, so that
advance planning on the optimum number of SRB components to be built can be

carried out. Several situations are analyzed, namely, these cases where:

(1) The booster is used continuously until not recoverable;
(2) The booster is used for 20 launches unless not recoverable;
(3) The booster is made up of identical, independent, replaceable compo-

nents.,

Two independent techniques have been used in this analysis. The first
method; to be called the State Probability Method, consists of defining an
appropriate state space for the outcome of the random trials. Then the proba-
bilicy of reaching each gtate is evaluated. The second method is called the
.Monte Carlo Technique, or the Model Simulation Method. Detailed discussion of
the Monte Carlo Method can be found in references 1 and 2. The Monte Carlo
Method is simpler to formulate than the State Probability Method, but requires
longer computer running time and can have statistical uncertainty due to sampling

size. Both methods are compared to check the results.

Finally, a simple analysis of uxpected cost is carried out. This includes
the case where the boosters can be built initially at some initial cost ard the
remainder built as needed. The resulting optimum number to build initially and

the minimum expected cost are evaluated.

1. Graves, M. E. and Perlmutter, M. "Statistical Analyeie of Flight Times
for Space Shuttle Ferry Flights", NASA CR-129021, Jan 1974.

2. Shreider, Y. U. A., "The Monte Carlo Method", Fergamon FPress, 1966.
. * 1-1
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Section |1
STATE PROBABILITY AND MONTE CARLO METHODS

The State Probability Method consists of defining the statistical problem
to be solved in terms of a state space of pertinent possible outcomes of the
random trials. The probability of obtaining each of these outcomes is then
calculated. The method will be illustrated in the solution to the present

problem.

The Monte Carlo Method simulates the problem, using a random number gener-

ator on a computer. A sufficient number of trials are simulated to obtain the

statistical behavior of the system.

The probability density of the number of one-component boosters needed for
a mission of 440 launches is calculated in subsections 2.1 and 2.2. This is
found for a given attrition rate of losing the booster in a launch. The boos-

ter is used continuously until nonusable.

Subsection 2.1 gives the State Probability Method of solution, while sub-
section 2.2 gives the Monte Carlo solution.

Subsection 2.3 and 2.4 consider the case where the booster can only be
used for a maximum of 20 launches. Subsection 2.3 considers the State Proba-
bilty solution while subsection 2.4 uses the Monte Carlo solution.

Subsections 2.5 and 2.6 extend the results to the multicomponent rocket
booster. In this case, the booster is made of identical replaceable components.
Each component has the same attrition rate, q. The probability distribution
of the number of components neaded for 440 missions is calculated. In subsec-
tion 2.5 the State Probability Method is used, while in subsection 2.6 the
. Monte Carlo analysis is used.

2.1 STATE PROBABILITY METHOD - CONTINUOUS USE, ONE-COMPONENT BOOSTER
g To evaluate the probability density of the number of one-component boosters
needed to achieve a mission of 440 launches for a given attrition rate, q, per
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launch where the booster is used continually until lost, then replaced, the
following steps are taken. First, a state Sr,k is defined as shown in Figure
2-1. The term Sr,k refers to the state of k launches with r booster replace-

ments. The state probability for the booster replacement in 1 launch is given

by

P(Sy k) = Py (2-1)

where P is the probability of replacing one booster in k launches.

Sy, DEFINES NUMBER OF BOOSTERS REPLACED, b, DURING A TOTAL NUMBER
*“ OF LAUNCHES, f
¢ DEFINES THE PROBABILITY OF FAILURE OF ONE BOOSTER IN f LAUNCHES

I I

A 52,4
i} 53,4

P

3 4 -
g / f / P2
g
3 / /
w :
& s /. s /
; 2 2,2
2 /94 2—4%
2
e
joay,
51,1/ 2
|
&
Py
0
0 1 2 3 4

BOOSTERS REPLACED

Figure 2-1. STATE SPACE DEFINING NUMBER OF BOOSTERS REPLACED FOR TOTAL NUMBER
OF LAUNCHES
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The attrition rate, or probability of booster loss per launch, is q, so

letting p=l-q, then

P1®q
1 (2-2)
P2*qp

-1
Pr=qp¥

Therefore,

Z p(S1 k) =q[l+p+ p2 + .00 ) =8 a1 (2-3)
9 l—p
k=1
The probability of 0 booster replacements in the mission of 440 flights is
given by

o 439

Pyo=l PGS, g0 = 1= [pi™h =" . (2-4)
Y 4mb40 i=1

This is the same result given by the binomial distribution for O replacements

in 439 launches.

P =B (k = 439, r = 0) (2-5)

1,0

where, B(k,r) = ;T?%%;TT k-x qr (2-6)

This process is continued to the state 82 . which refers to replacing two
]
boosters in k total launches. The probability of reaching state 82 k 8 can
i
be seen from Figure 2-1 is given by

P (32,3) = p (51,4-1) P+ P (31,3-2) Pyt een p,(sl.l) Py-1

7 2 2=

- ij_l P + 2’3-2 P, + s + g% gi . j even

2
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This can be seen to be equal to
p(s, ) = (4-1) 2 172 (2-8)

This can be checked as before

Iptsy )= ] (1) a2 pd2=q? [1+2p+ 32+ ... ] (2-9)
=2 2 gm
= 3-2-—- = ]
(1~p)2

The probability of using one or fewer booster replacements in the mission is

then given by

® 439 439 .
By LpGy ) =1-10Gs, ) =1-] G-1) g2 p32 .
3=440 j=2 j=2 (2-10)

It can be seen that (ref. 3, Section III)

439
j{ (3-1) p3=2 = 1 + 2p! + 3p2 + ... + 438p*Y
=2
-ph37 438
.l"_p(lz _)_ (1 +437) p (2-11)
q q2 q
1 438 , 1.4
by Bk i T B
1 q
Then,
438 (2-12)

Po," p438 (q + p) + 438q p438 = p439 4 439q p

This is equivalent to the cumulative binomial distribution with 1 or less
replacemants in 439 launches (see eq. 2-6)

1’1.1 = B(k = 439, r=0) +B (k =439, r=1) (2-13)

3. Jolley, L. B. W., "Swmation of Series"”, Dover Publiocatins 1961.
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This process can be concinued to give

P, " B(k = 439, r = 0) + B(k = 439, r = 1) + B (k = 439, r = 2),
b
etc. (2-14)

Besides the cumulative distribution Pl r that is, the probability of
’
using r replacements or less in the misgsion, Py , can be written, the distri-
14
bution which gives the probability of using exactly r replacement. for the
mission. Thus,
Pio" B (k= 439, r=0)
L]
Pry" B (k =439, r=1) (2-15)
-9
=B (k = 439, r = 2)
Pl,z ( »
The probability distribution P shown in Figure 2-2 gives the proba-
bility of using n one-component boosters in a mission of 440 launches.

ATTRITION RATE
PER LAUNCH q = .04

E
§ .2
E
-t -
= CONTINUOUS USE OF MAXIMM OF 20
g . fnooam UNTIL LOST ius:s OF BOOSTER
. ——
. < N /
a VvV T~

~—,

- , '
6 8 10 12 4 16 18 20 22 24 26 28 30 32 M 3k 38 4 482 M«
n NUMBER OF BOOSTERS USED

O e o Y V=4S Ty =P T TV S =Yy v =¢rral
Figure 2-2. PROBABILITY DENSITY OF NUMBER OF SINGLE COMPONENT BOOSTERS USED
IN 440 LAUNCHES
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The cumulative distributlsn, P) , which gives the probability of using n

or less one-component boosters in 440 launches, is shown in Figure 2-3, As

has been shown previously, the probability density in Figur: !- s

binomial distribution for 439 launches or trials where th. probabi.

failure or attrition is q and the number of failures, or boosters replaced, 1is

r The mean and variance of the binomial is given by

the
ty of

u = 439q and o2 = 439q (1-q). (2-16)
1204 T caJoumIs J:a ! "I"‘"IW" W‘T
EQUIVALENT BOOSTER :é: fw'" L
[ e ] = COMPOMENT BOOSTER 1 .
T — 1 - COMPONENT GAUSSIAN APPRUX. ! - 7
@ 1 - COMPONENT MONTE CARLO i q ” N
M0+ @ 2 . COMPONENT BOOSTER 2 e °
4+ 8 - COMPOMENT BOOSTER 8 y L lo
- //_ -]
™ i o s+ ¥
o+ ‘____ 7
qw q= .15 &% o
- y — - )-a——v‘—'—l
Qm_ﬁA »"'P-}j? _ r//‘o
4 o ~
2 o ] e 4+
§ To- p o, +
2l o - - | =
= T v Aty el
§ 60 // * + . ° /P’ A
; 4 F | °
P - + |+
~ - 4P R 1} ° L J
¥ L 0/ -~ -‘r{
0{° Qs .4 —
”-—-O-h /’ % -
> *
2 — e )
+ +
» 0 .
1ol B L A o
0 w:ﬁrﬁ t
o
AR E T I IE EEEI I
Pya® 130 CUMRATIVE PROBARILITY, PERCENT
Figure 2-3, CUMULATIVE PROBABILITY OF USING n OR LESS COMPONENTS IN 1, 2

T -

OR 8 COMPONENT BOOSTERS IN 440 LAUNCH MISSIONS; BOOSTERS RE-

PLACED AT FAILURE
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For a large number of launches, the binomial distribution can be approxi-
mated by & Gaussian distribution with the same mean and variance as the
binomial. The 95 percent probability of using r replacements of the booster
in 439 launch missions is given by the Gaussian distrlbution as

1.656 = Lo (2-17)

The 50 percent (Pl,n = ,5) and 95 percent (Pl,n = ,9%) cumulative probability
for number of single-component boosters reeded for a mission of 440 launches
is plotted in Figure 2-4.

100

3
‘%
: ~q
N
[

70

RERN7Y

MPRER OF BOOSTERS MEEDED
]
-4

10

- y - - -
i
~ &
]

{
0 .02 .06 .06 .08 .10 .12 .14 .16 .18 .20 .22
o ATTRITION RAYE PER LAUNCH

Figure 2-4. THE 50 PERCENT (P] = ,50) AND 95 PERCENT (Py , = .95)
CUMULATIVE PROBABILTTY FOR NUMBER OF SINGLE CMONENT BOOSTERS
NEEDED FOR A 440 LAUNCH MISSION

2-7

—— e ——— o e S g n (TP TN ST A Tt T AR S R -



2.2 MONTE CARLO METHOD — CONTINUOUS USAGE, ONE-COMPONENT BOOSTER

For the same conditions discussed in the previous eubsection a Monte Carlo
soluticn can also be obtained. A set of pseudo random numbers which are
uniformly distributed between O -nd 1 is generated. Sequences of these numbers
are examined and recovery of SRB is assumed if the values are less than l-q
and non-recovery of SRB is assumed for any number exceeding l-q. The probability
of 440 successful missions is calculated for a given number of starting SRB.
These results are plotted in Figure 2-3 and are in good agreement with the
resul:s of th. State Probability Method.

2.3 STATE PROBABILITY METHOD - 20 USES ONE-COMPONENT BOOSTER
A calculation similar to that of the continuous usage case can be carried
out if the booster is replaced after 20 uses or failure. For this case, instead

of (eq. 2-2), the probability of replacing one booster in k launches is obtained,

P, pk-l, 1 <2 <20 (2-18)

19
Pyo = (Vp
P - 0; &>20 .,
As before, (eq. 2-1) gives
P(sl’k) - Pk . (2-19)

Now it can be seen that

o @
; 1 19
Io(s, )= ] pj-q(1+li+v2+---*r°l+v

kel ’ el (2-20)
-ql1+v+vz+v17l+p“-1 .
Then as bsfore,
-x- -'c.j‘.? )
P = p(s, ,)=1- _ p(8 ,) . (2-21
10 passo Lok kel Lo

2-8
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This process is continued as before to yield

439
P =1~ Zz P(s, ) (2~22)

1, j
where p(S, j) is given by equation 2-7. This procedure is then continued to

“y
obtain P1,2’ P1,3 e

The probability distribution for the number of single-component boosters
for 20 uses in a 440 launch missior is shown in Figure 2-2, and the cumulative
distribution which gives the probahility that n or less booster components will
be used for the mission is shown in Figure 2-5. The result can be seen to be
close to Gaussian, since the cumulative distribution is close to a straight line
on the probability graph in Figure 2-5. The 50 percent (pl n=0.5) and 95 percent
?
(p1 n-0.95) cumulative probability for the number of boosters needed are also
’

plotted in Figure 2-4, along with the case for continuous usage of the boosters.
It can be seen that for high attrition rate, q = 0.2. The results for these

two cases converge.

24 MONTE CARLO METHOD - 20 USES, ONE-~-COMPONENT BOOSTER

The Monte Carlo procedure in the present case of a maximum 20 uses of the
booster is similar to the Monte Carlo solution for the continuous use case,
except in the simulation the Looster is replaced after 20 consecutive launches,
Again the probability of the number of boosters needed to achieve 440 launches
is calculated and plotted in Figures 2-2 and 2-5.

2.5 STATE PROBABILITY METHOD — MULTI-COMPONENT BOOSTER

The SRB can be assumed to be built of replaceable components, each
component having an independent attrition rate. Interest is in the probable
total number of components needed for a mission of 440 flights if each component

has iLue same attrition rate, q. Again, a state space c " is drawn as shown in

i,

Figure 2-6. The state Sy ¢ represents 1 independent components having a total
’

of r replacements during a mission of 440 launches.
Considering a one-component rocket:
A - . - -?
p(gl’r) pl,r s r=0, ..., 439 (2-23)

2-9
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NUMBER OF COMPONENTS REPLACED IN THE MISSION

C P C C C
1,3 ]’0 2,3 p 4’3 p 8,3
2%* 2,0 4,0
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c c
P / C P / 2, 4,2 P 8,2
]13 1.2- ]13 P2,0 4,0
P P /
[] »2 g’3 P
LY LA
P P P / 4,1
1,2 1,17 2,17
c /, ’ c C
/ 117 JAUD AL 8,1
,0 2,0 4',0
P
5 5 P2.1 4,25
1,1 1,1 / 4,1
4 “2.0 C4,0 ‘8.0
1 4 +0 P ’ p ’ P 4 '
1,0 1,0 2,0 4’0
1 2 4 8

NUMBER OF INDEPENDENT COMPONENTS IN BOOSTER

Figure 2-6. STATE SPACE DEFINING THE TOTAL NUMBER OF COMPONENTS REPLACED IN

-:—~i-.‘$\;&§r» v T La wrt e e

b
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1

THE MISSION FOR A ROCKET BOOSTER BUILT WITH A GIVEN NUMBER OF
REPLACEABLE COMPONENTS; Cc,r DEFINES NUMBER OF COMPONENTS REPLACED,
r DURING A SUCCESSFUL MISSION USING ROCKET BOOSTER CONTAINING c
g%gbég?ﬁgLE COMPONENTS; Pc,p IS THE PROBABILITY OF STATE Cc,r
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where p1 r is the probability of r replacements of the one-component during a
?
successful mission. This result was obtained previously in equation 2-15, etc.

and is shown in Figure 2-2.

Obviously,

L Py =1 (2-24)

As seen in Figure 2-6, state C, , which represents the state of a two-

2,r

component booster with a total of r component replacements in the mission can

be found as follows. Consider the state ¢ 0° that is a two-component booster
?

with zero component replacements in the mission. The probability of obtaining

this state is given by

p(cz’o) = pz’o = p(cl’o) pl’o = pl’o pl’o d (2-25)
This process can be continued to give
Pleg 1) = P,y = Pley o) Py g ¥ P(ey 1) P o™ 2P 1 P10 (2-26)

or for an odd number replacements, r odd,

p2,r - p(c2,r) " 2pl,r p1,0 + 2p1,r—1’p1,1 toe 2 e+l P10
1,— 1,—
2 2
(2-27)

while for r even,

. (2-28)
1, 1,‘2—

p2,r - 2pl,r p1,0
This can be extended to the state ca.t, which represents a 4-component booster
with a total of r components replaced in the mission as shown in Figure 2-6.
Continuing as in the previous case, the probability of achieving state °4.0'
that is, a 4-component booster with 0 component replacements in the mission,
can be written as

2-12 .




DT et < -

P40 = Pe4,0) = P(e o) Py g = Py Py0 (2-29)

Then continuing as before,
Pe,1 = Pley 1) = Pley o) Py g +P(cy 1) Py =20 o Py (2-30)
(2-31)

Pu,2 = 2P) 9Py ot Py 1Py -

This can be extended for r odd to

Pae Py ) =28y [ Py *20) 1Pyt et P
2, 2= 5 ==
2 2
(2-32)
and for r even,
+ ...+ p P . (2-33)

pé,r - ZPZ,r p2,0 2 L L
2 "2

This procedure can be applied to 8 similar components in a similar manner, giving

ps’o - p(ca’o) = P(Ca’o) pl"o - pa’o Plo,O (2-1“)

Pg,1 ™ Pleg ) = Pley 1) By o+ Pley o) Py y = 2P, 5 Pyp (2-35)

Again, for a total of r replacements of an 8 independent component booster for
r odd,

Pe,r = 2Pu,r P40t Pyp-1 Py teee 296’551 P, oL (2-36)
2

while for r even,

+ (XN} + P P (2'37)

Pa,r - zpl"r P4.0 lo,%' ‘h%

These results are shown in Figures 2-3 and 2-5 as cumulative distributions,

9

pc’d . (2-38)

c,f ~'d‘o
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26 MONTE CARLO METHOD - MULTI-COMPONENT BOOSTER

The simulation for the multi-component SRB is similar to the Monte Carlo
analyses for the single~component SRB. Two sets of pseudo random numbers are
used for the 2-component booster, while 8 sets of pseudo random numbers are used
for the 8-component SRB. The same method as used in the =ingle-component SRB
is then used. The results of these calculations are shown in Figure 2-5, The
probability of having a specified number ~f booster components remaining after

440 missicns, given the number of booster components initially available, is also

shown in Figure 2-7.

The confidence range of the present Monte Carlo calculation can be found
following the procedure shown in reference 1. Assume Ms is the number of 440
lauach missions using n or less boosters in N Monte Carlo trials, Then che

probability of this occurring Pe n? is given as
1]

Ma
Rip . - (2-39)
M
The 99 percent confidence ranges, (see ref. 1) on ﬁg is given by
M
N p‘:’n = § < 2,57 /bc’n(l—pc’n)/N (2-40)

If, considering Pen” 0.98 one may obtain for N=350 trails
]

5 < 2,57 [0'925602:] - 0.019 . (2-41)

This result gives an error range in pc,n of +0.019, This would correspond,
using the two-component State Probability results, to an equivalent error range
of +6 equivalent boosters or +12 components. The Monte Carlo results fall
well within this range, as can be seen in Figure 2-5.

2-14
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Section 11|
APPLICATION OF RESULTS TO SHUTTLE SRB COST ANALYSES

The present results can indicate expected costs of the SRB and aid in the

decision~making process to achieve minimum costs.

If the cost of building a booster is assumed as c, then the expected cost
of building the boosters for the 440 launch mission is given by

E.C. = C z np = C U
n=1 c,n

n (3-1)
This shows that the expected cost of the booster for the mission is equal to the
average of the distribution of number of boosters used in the mission times the
cost per booster. Figure 2-4 indicates that th2 average number of boosters for

the mission, which is approximately equal to P = (0,5, and also therefore

the cost, will rise with the attrition rate an;’:s higher for the 20 reuses

case than for the continuous usage case. If we assume the multi-component
booster cost is equal to the cost of a one-componént booster, then, since the
mean for the multicomponent booster is close to the value for the mean of a one-
component booster (see Figures 2-3, 2-5), the cost for the multi-component
boosters should be close to the cost for the single-component booster. How-
ever, the components are likely to have a significantly lower attrition rate
which would give significantly lower cost for the multi-component booster

compared to the single-component booster.

The decision process can be extended to the case vhere an initial group of
boosters can be built at one cost and the remainder built as needed at a
dif ferent cost. An objective is to find the optimum number to build initially
so as to obtain a minimum cost, This can be done as follows, Assume an
initial cost of building booster components of Ci. Then if additional booster
components are needed to complete the mission, they can be built at cost Cee
A decision table can be constructed as shown in Table 3-1.
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NUMBER OF BGOSTER COMPONENTS NEEDED FOR MISSION

Table 3-1. DECISION TABLE FOR BOOSTER COMPONENTS
COMPONENTS BUILT INITIALLY

NUMBER OF COMPONENTS BUILT INITIALLY

b 1 2 3
n N N2 M3
1 Sy 1)=C CiNy ,)=2C ity 3)=3C,
EC(Ny )=Cilly ey | ECONy p)=ClNy )b g ] EC(N 5)=CNy 3)P
Nos N2,2 Np.3
2 CNy )=C;+Cq CNy ,)=2¢, ClM, 3)=3c,
EC(Ny )=C(Ny 1P 5 | ECNp p)=ClNg p)oc 5 | EC(N g)=ClNp 5)Pc 5
N30 N3,2 N33
3 CNy 4)=C;+2C, ClNy p)=2C,4C, TNy 3)=3¢,

EC(N3,4)=CiNg 1P, 5

EC(N3 ,)=C(N3 2)P¢ 3

EC(N3 3)=C(N;3 3)P¢ 3

EC(1)= nZIC(N"’1)p°'n

o

EC(Z)- nzlc(uﬂoz)pC;ﬂ

£ ] P,

The possible decision on the number of components to build initially is
along the top of the table and the number needed for the mission along the side.
The state Nn.b is defined, where b refers to the number of components built ini-
tially and n refers to the number needed. The cost of each state is given by

C(Nn.b) = bC, + (n-b)cf forn > b (3-2)
- bci for n<b
3-2
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This can be normal:zed,

C(Nn b)
c(Nn b) = -—E—*- =b + (n-b)(Cf/C1) forn > b
’ 1 (3-3)
=b for n < b

The probability of each state occurring can be written as

PO, ) =P (3-4)

where the subscript c refers to the number of components per booster and n
refers to the number of components used per mission. Then the expected

cost of each state is given by EC(Nn b) = c(Nn b)pc n The expected cost of
1] » ]
each decision can then be found to be given by

o

EC(b) = nzl c(Nn’b)pc,n . (3-5)
The optimum decision of the number of booster components to be built initially,

bn’ is the value that causes the expected cost to be a minimum ECm 80 that
EC(bn) = ECm . (3-6)

These results have been evaluated which are shown in Figures 3-1 and 3-2 as a

function of the cost ratio Cf/ci‘

The results in Figure 3-1 are plotted in percent cumulative probability of
the number of booster components used in the mission. The results indicate that
if the ratio of final cost per booster to initial cost Cf/C1 is less then some
minimum value, the optimum procedure is to build one bcoster initially, then
build the rest as needed. For values. of Cf/C1 greater then this minimum,
build initially most of the components needed for the mission so that one is
80 percent or more coniident that sufficient boosters are built to complete the
mission, even though some may be left over.

In Pigure 3-1 the normalized cost of the optimum decision 1is shown. Much
more detailed calculations than those shown here are necessary for a complete

cost analysis. 43
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Sectizn IV
CONCLUSIONS

The Space Shuttle wi'' ..t recoverable solid rocket boosters. However, at
times due to damage or we«ar ihe rocket booster will not be recoverable and must
be replaced. It 18 ¢! ‘.swcrance to know the probable number of solid rocket
boosters that will ;.. e ve replaced in the nominal mission of 440 Space
Shutrle launches, .. iaformation is necessary to the planning of the mission
80 that the solid rvocket booster replacements will be available as needed at

a minimum cost,.

The present analysis calculated the probability distribution of solid
rocket boosters needed for a mission of 440 launches for a given attrition rate
or probable loss of the solid rocket booster per launch. 7Two methods of cal-

culating the probability distributions were used. These are the State Probability

Method and the Monte Carlo Method. The results from both methods agreed. It
was found that the Monte Carlo Method was easier to formulate, while the State
Probabilicty Method required less computing time and was more accurate.

The results of the calculation showed that the probability distribution
of booster replacements for the 440-lsunch Shuttle mission was close to
gaussian with s mean value that rose linearly with the attrition rate. Thus,
as can be seen in Figure 2-4, for an attrition rate of 0.04 the mean or expected
value of boosters needed for the 440-launch mission, which in this case is
equivalent to the 50 percent cumulative p obab!..ty, is 18. This number goes
up to 44 boosters for an attrition rate of 0.1 and increasas further to 88
boosters for an attrition rate of 0.2.

Also shown in Pigure 2-4 is the number of boosters for the 95 percent
cumulative probability value. The probability is 0.95 that this number of
boosters or less will be needed to successfully complete the mission of 440
launches. As shown in Figure 2-4, st an attrition rate of 0.04 the 95 percent
cunulative probability number is 25 boosters. This number rises to 54 boosters
for an attrition rate of 0.1, and to 103 boosters at an attrition rate of 0.2.

4-1
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The effect of wear on the solid rocket boosters was included in the

analysis by replacing the booster aiter 20 launches. This caused the expected
number of rocket boosters needed to complete the mission to increase. As can

be seen from Figure 2-4, the mean o1 expected values of solid rocket boosters
needed for a 440-launch mission changed from 18 to 33 for an attrition rate of

q = 0.04 if the rocket booster was replaced after 20 launches instead of being
used coninuously. At an attrition rate of 0.1 _he number of boosters needed
went frow 44 to 49 in going from continuous use to 20 uses, while at an at- ition
rate of ¢.2 the number of boosters needed was the same for the case of 20 uses

as for the continuous use case.

The boosters can be built up in replaceable components. If damaged, these
components can be replaced without replacing the entire booster. An analysis
was carried out to calculate the probability ‘istribution of the number of
replaceable components needed for a 440-launch mission for a given component
attrition rate. This result is shown in Figure 2-3 for the continuous Looster
use case. As can be seen from the fig re the expected number of components
needed for the mission is given in terms of equivalent boosters. An equivalent
booster is equal to the number of components in a booster, so that 10 equivalent
boosters for an eight component booster consists of eighty components. Thus for
a component attrition rate of 0.04 it can be seen that the expected number of
equivalent boosters for a booster made up of eight replaceable components is
nearly the same as that for a booster with one component, and is 18. This would
make the expected number of components for the eight component booster equal
to 144.

For the case vhere the components are replaced after 20 uses Figure 2-5
is used. If the results are examined for a component sttrition rate of 0.1
ve see that the expected number oi equivalent boosters for the eight component
booster is larger (52) than the expected number for the one component booster
(50). This would make the expected number of components needed for the 440-
launch mission with an eight component booster with an attrition rate per
component per launch of 0.1 equal to 416.

4-2
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A simple cost analysis was carried out, based on the probability distribu-
tion obtained. The results indicate that the expected cost should be proportional
to the expected number of boosters needed. Thus the cost would rise as the
attrition rate rises and should be higher for the 20 reuse case than for the
continuous use case; see Figure 2-4, Assuming the cost of the multicomponent
equivalent booster is clese to the cost of a single component booster, and since
the expected values are close for both cases for the same attrition rate, the
costs should be similar for the two cases. The attrition rate should be lower,
however, for the multicomponent booster. This is because if one component in
an eight component booster is damaged only one component needs to be replaced
whereas for a one component rocket the entire rocket must be replaced. This
would give an attrition rate for the eight component booster 1/8 that for the
one component booster. This would result in an eight fold cost cut for the

multicomponent booster, compared to the one component booster.

The cost analysis was extended to the case where an initial group of
boosters could be built at some initial cost and the remainder built as needed
at a final cost. The objective was to find the optimum number to build initiélly
as a function of the ratio of initial to final cost so as tc minimize the overall
cost. In Figure 3-1 the results show that if the ratio of final cost to initial
cost is below a certain value the boosters are built as needed. However, if
they are above this value, then enough boosters should be built initially so
that one is fairly certain of having sufficient boosters to complete the
440-launch mission. Thus from Figure 3-1 for a one component booster in
continuous use with an attrition rate of 0.04, 1f the ratio of final to
initial cost is below 1.54, bulld the boosters as needed; 1f this ratio is
higher than 1.54, then build enough boosters so that the probability is 0.94
that there are sufficient boosters to complete the mission.

The analysis can readily be extended to other values of attrition rate,

number of launches per mission, and number of components per rocket.

NASA—MSFC

{

Y




